Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
As a result of the reduced pressure loss relative to ribs, recessed dimples have the potential to increase the thermal performance of internal cooling passages. In this experimental investigation, a Stereo-Particle Image Velocimetry (S-PIV) technique is used to characterize the three-dimensional, internal flow field over V-shaped dimple arrays. These flowfield measurements are combined with surface heat transfer measurements to fully characterize the performance of the proposed V-shaped dimples. This study compares the performance of two arrays. Both a staggered array and an in-line array of V-shaped dimples are considered. The layout of these V-shaped dimples is derived from a traditional, staggered hemispherical dimple array. The individual V-shaped dimples follow the same geometry, with depths of δ / D = 0.30. In the case of the in-line pattern, the spacing between the V-shaped dimples is 3.2D in both the streamwise and spanwise directions. For the staggered pattern, a spacing of 3.2D in the spanwise direction and 1.6D in the streamwise direction is examined. Each of these patterns was tested on one wide wall of a 3:1 rectangular channel. The Reynolds numbers examined range from 10000 to 37000. S-PIV results show that as the Reynolds numbers increase, the strength of the secondary flows induced by the in-line array increases, enhancing the heat transfer from the surface, without dramatically increasing the measured pressure drop. As a result of a minimal increase in pressure drop, the overall thermal performance of the channel increases as the Reynolds number increases (up to the maximum Reynolds number of 37000).more » « less
-
A novel, double hole film cooling configuration is investigated as an alternative to traditional cylindrical and fanshaped, laidback holes. This experimental investigation utilizes a Stereo-Particle Image Velocimetry (S-PIV) to quantitatively assess the ability of the proposed, double hole geometry to weaken or mitigate the counter-rotating vortices formed within the jet structure. The three-dimensional flow field measurements are combined with surface film cooling effectiveness measurements obtained using Pressure Sensitive Paint (PSP). The double hole geometry consists of two compound angle holes. The inclination of each hole is = 35°, and the compound angle of the holes is = ± 45° (with the holes angled toward one another). The simple angle cylindrical and shaped holes both have an inclination angle of = 35°. The blowing ratio is varied from M = 0.5 to 1.5 for all three film cooling geometries while the density ratio is maintained at DR = 1.0. Time averaged velocity distributions are obtained for both the mainstream and coolant flows at five streamwise planes across the fluid domain (x/d = -4, 0, 1, 5, and 10). These transverse velocity distributions are combined with the detailed film cooling effectiveness distributions on the surface to evaluate the proposed double hole configuration (compared to the traditional hole designs). The fanshaped, laidback geometry effectively reduces the strength of the kidney-shaped vortices within the structure of the jet (over the entire range of blowing ratios considered). The three-dimensional velocity field measurements indicate the secondary flows formed from the double hole geometry strengthen in the plane perpendicular to the mainstream flow. At the exit of the double hole geometry, the streamwise momentum of the jets is reduced (compared to the single, cylindrical hole), and the geometry offers improved film cooling coverage. However, moving downstream in the steamwise direction, the two jets form a single jet, and the counter-rotating vortices are comparable to those formed within the jet from a single, cylindrical hole. These strong secondary flows lift the coolant off the surface, and the film cooling coverage offered by the double hole geometry is reduced.more » « less
An official website of the United States government
